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Abstract

AGIS-based model for the assessment of the landslide susceptibility in a selected area of the Jurassic escarpment in the Swabian Alb
(SW-Germany) is described, using the weights-of-evidence method. A quantitative model applied to landslides and their causative
factors was created and illustrated in susceptibility maps. While previous research work in this area concentrated on large-scale
investigations, the present study was carried out at a regional level with a target scale of 1:150,000. The method is based on the
assumption that future landslides will occur under the conditions similar or equal to those of past comparable landslides of the same type.
Therefore the analysis was limited to one single type of landslides where the causative factors can be assumed as stable over a period of
time. Due to uncertainties in the model, mainly because of variances of the weights assigned to the causative factors, the derived
probability values, representing the susceptibility for future landslides, have to be considered relative. However, potential susceptible
areas can be delineated and landslide indicators can be identified from the available data set. Slopes with angles from 11° to 26°,
composed of the Oxford limestone/marls as well as strongly argillaceous and silty colluvial material such as solifluction layers and
colluvial cones, are susceptible. Themain soil type of the escarpment and the other steep slopes of the SwabianAlb valleys are Rendzinas
formed in solifluction layers. Rendzina profiles including rock debris and clay, which are superimposed on marl debris, were also
identified as landslide indicators. These findings are in agreement with previous geomorphological studies in the same area. The
methodology seems to have widespread applicability beyond this local research area, with the limitation that the knowledge of past
landslides input to the model affects the absolute value of the final probability.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Damages to settlements and infrastructure as well as
human casualties caused by landslides are increasing
worldwide (Singhroy et al., 2004). In Central Europe the
expansion of urban and industrial areas into landslide-
prone terrain brings about instabilities in many potentially
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unstable slope areas (Terlien et al., 1995). Landslide
susceptibility assessment has become a major subject for
authorities responsible for regional land use planning and
environmental protection. As a consequence, a growing
research effort deals with the creation of susceptibility
maps or hazard maps describing the actual or future threat
from unstable slopes. According to the definition of Varnes
(1984), slope susceptibility is the probability of the
occurrence of a potentially damaging landslide within a
specified period of time and within a given area.
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Deterministic or statistical models are suitable to determine
“where” a landslide can be expected with a certain proba-
bility within a given terrain unit (e.g. grid cell, unique
condition unit, and slope unit). Such models are best clas-
sified as susceptibility models. It is important to note that
they do not provide an estimate of “when” landslides occur.

The study area of this investigation is located at the
Jurassic escarpment of the Swabian Alb (SW-Germany),
an area that has been studied extensively in the past
(Hölder, 1953; Bleich, 1960; Bibus, 1986; Schädel and
Stober, 1988). The main focuses of these geomorpho-
logical studies were the development, structure, type,
age, and causes of past landslides. In the framework of
the MABIS-projects (Mass Movements of S- and W-
Germany, German Research Foundation/DFG), geomor-
phological analyses were also carried out over an exten-
sive area (Terhorst, 1997, 1998; Bibus, 1999; Kallinich,
1999; Terhorst, 2001), and in the process a comprehen-
sive database on landslides was built (Kraut, 1999).
Large-scale, GIS-based landslide susceptibility maps for
the Swabian Alb were developed by Thein (2000) using
regression analysis. In addition, Kreja and Terhorst
(2006) developed a landslide susceptibility map for a
small area based on a hydrological model. Detailed sta-
tistical models for landslide susceptibility assessment,
however, were rarely applied in SW-Germany and only
to small areas of terrain.
Fig. 1. Study area on the escarp
So far,mostGIS analyses of landslides in SW-Germany
were based on the assumption that landslide susceptibility
is strongly connected to the occurrence of former land-
slides and current hydrological conditions. This assess-
ment approach required detailed hydrological data and
high-resolution digital terrain models (minimum resolu-
tion=10 m), which were created manually from topo-
graphic maps and field measurements (Thein, 2000; Kreja
and Terhorst, 2006). Moreover, landforms and hydro-
logical parameters of past landslides needed to be iden-
tified and mapped in the field. Due to the very time-
consuming process of building such a data set, which also
took into account former Pleistocene mass movements,
most GIS analyses were only applied to small areas.

For social tasks such as inland development and
spatial planning, information on landslide susceptibility
for large areas is required. While former models for SW-
Germany were applied to small areas with a high level of
accuracy and detail, the focus of the present study is on
the regional assessment of the landslide susceptibility
with a target scale of 1:150,000. The different premises
in scale and level of detail required a new assessment
approach since detailed terrain models, as used in for-
mer studies, are unavailable for larger areas in the
Swabian Alb. Therefore, the present study uses a statis-
tical approach, considering a variety of factors contri-
buting to landslides.
ment of the Swabian Alb.
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Various methods have been applied to regional land-
slide susceptibility assessment worldwide in the last
twenty years, including deterministic, heuristic and sta-
tistical approaches. The methods were reviewed by
Carrara et al. (2001), Chung and Fabbri (2003, 2005),
Remondo et al. (2003) and Van Westen et al. (2003),
who identified the following deficiencies in many land-
slide susceptibility maps:

• Zonation of the study area with distinct borders and
Boolean characters, classified only into “susceptible”
or “not susceptible” zones. Such discrete boundary
determination is seldom applicable to natural
phenomena.

• Qualitative assessments such as “high”, “moderate”
and “low” susceptibility, without any quantification
of these terms.

• No independent validation of statistical models for
landslide susceptibility assessment. Very often infor-
mation about reliability, uncertainties or predictive
power is missing.

• Simplification of input data (e.g. by categorization)
and consequent loss of information because of the
Fig. 2. Geological and geomorphological setting of a characteristic landslide sys
inability of the applied model to manage both dis-
crete and continuous data.

• Missing information on the basic assumptions of the
applied model.

Recent investigations, therefore, have concentrated
on answering these key questions on the quantification
of landslide susceptibility, uncertainties in the model,
and model validation. One of the present study's objec-
tives is to overcome these deficiencies.

However, the main objective of this study is to identify
and rank the preparatory (causative) factors of landsliding
in a region of SW-Germany. The method of weights-of-
evidence, originally developed for mineral exploration
(Bonham-Carter et al., 1989; Bonham-Carter, 2002), is
applied to these causative factors for assessing landslide
susceptibility.

2. Study area and regional settings

The subjects of the present investigation are landslides
on the steep slopes of the Jurassic escarpment of the
Swabian Alb, the highest and most conspicuous
tem at the Swabian Jurassic escarpment (modified after Bibus et al., 2001).
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escarpment of the SW-German scarpland. The study area is
situated between Mössingen and Reutlingen, and covers
approximately 500 km2 (Fig. 1). Mass movements of
different types and ages are widespread across the region.
They repeatedly damage and destroy agricultural areas,
streets and forest paths aswell as settlements (Thein, 2000).

The main type of mass movement can be described
as slump-earth flow (Dikau et al., 1996), a combination
of sliding and flowing movement (Fig. 2). Detailed
geomorphological field studies show that these type of
slide mass is formed mainly by large rotational blocks,
which occurred during the Pleistocene. On average, the
blocks are 200–300 m long and 20–50 m wide
(Terhorst, 1997; Bibus and Terhorst, 2001). During
the Holocene, some of the older mass-wasting deposits
were reworked and displaced by smaller translational
slides and flows (Terhorst, 1997, 1999). This younger
Fig. 3. Simplified scheme of the we
type of mass movements is the subject of the present
investigation. In several cases secondary movements in
Pleistocene landslide areas are responsible for cata-
strophic events. The best known example is the
Mössingen landslide in 1983 (Bibus, 1986; Schädel
and Stober, 1988), which reactivated a rotational block
(Fig. 2) with an affected area of 0.6 km2. For the last
200 years, events of the size of the Mössingen landslide
occurred with an average recurrence interval of about
20 years (Bibus et al., 2001).

The occurrence of most landslides is linked to a
combination of causative factors, reflecting general na-
tural settings in the study area. Primarily, the topographic
parameters of the Swabian escarpment are important for
the determination of landslide susceptibility. The escarp-
ment rises 300–400 m over its foreland, and is
characterised by very steep slopes.
ights-of-evidence modelling.



Table 1
Data sources

Causative factor (evidence) Resolution/
scale

Source Content description

Theme Factor

Soil type Soil type 1:150,000 LGRB (1998) Predominant soils describing types, sub-types
Geology Geological units 1:150,000 LGRB (1998) Major geological components of the scarpland (Triassic and Jurassic), the

plateau and the foreland of the Swabian Alb with 13 geological units
Geology Distance-

escarpment
1:1500,000 LGRB (1998) A distance surface from the cuesta scarp, which is an important morphological

borderline in the structure of the escarpments. At this scarp a
higher landslide frequency is observed

Hydrogeology Hydro-geological
units

1:150,000 LGRB (1998) Hydrogeological units of the scarpland (Triasssic and Jurassic), the plateau and
the foreland of the Swabian Alb

Tectonic Lineament-density 30 m Theilen-Willige
(2005)

A density surface from the mapped lineaments indicating potential faults and
fracture zones

Tectonic Lineament-
distance

30 m Theilen-Willige
(2005)

A distance surface from the mapped lineaments indicating potential faults and
fracture zones

Geomorphology Geomorphological
units

1:200,000 Durwen et al.
(1996)

Main geomorphological units with information about soil depth, humidity and
temperature

Topography Slope angle 90 m SRTM (2004) Maximum slope angles derived from the SRTM terrain model
Topography Curvature 90 m SRTM (2004) Total curvature combined from horizontal and vertical curvature derived from

the SRTM terrain model
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Climatic factors such as the annual precipitation of
800–1000 mm and runoff from spring snowmelt are
relevant causative factors for Holocene landslides. Geo-
logical conditions such as alternating layers of perme-
able and non-permeable Jurassic rocks significantly
contribute to slope instability. The plasticity of the
Middle Jurassic clay (Callovian, cl) and particularly the
boundary between this clay and the overlying Oxford
marls (ox1) are conducive to landslides (Fig. 2). The
impermeable Callovian clays form the main spring ho-
rizon in the cuesta slopes. As a consequence, the Oxford
marls soften whenmoistened due to enhanced pore water
pressure. In addition, the headward erosion by tributaries
of the Rhine River, in the form of seepage erosion, also
produces slope instability (Villinger, 1998). In some
cases the karst aquifer of the limestone plateau is im-
portant for dynamic slope processes. Since the Oxford
limestone is highly permeable, the basal drainage of the
karst aquifer takes place at the boundary between the
Oxford limestone and Oxford marls, and is responsible
for an additional hydrological charge of slope areas.

3. Method and data

3.1. Background

The method “weights-of-evidence” was developed
for the identification and exploration of mineral deposits.
Bonham-Carter et al. (1989) and Bonham-Carter (2002)
used it for the mapping of gold potential in the Meguma
terrain of Nova Scotia. The model uses the spatial dis-
tribution of the mineral occurrences to calculate a multi-
map signature for gold mineralization, which can then be
employed to map gold potential. In the field of mineral
deposits exploration, weights-of-evidence is one of the
widely used statistical data integration techniques.

Recently, the method has been tested by a few inves-
tigations of landslide susceptibility assessment. Carrara
et al. (2001) stated that conditional probability analysis
is a valuable tool in defining hazard zonation. This
applies in particular when a few but relevant factors are
available, and good knowledge of the landsliding causes
exists as in the present study.

Van Westen et al. (2003) applied the Bayesian prob-
ability theory to six differentmodels for the same study area
in the Alpago basin, East Belluno, Italy. By comparing the
hazard maps with direct expert assessments of the study
area, it was shown that an overall accuracy of the suscep-
tibility maps of 52% to 76% could be achieved. Nguyen
and Bui (2004) also used the Bayesian approach for the
assessment of the landslide susceptibility in the Yangsan
area in Korea. It was stated that weights-of-evidence is a
relatively simple and cost-effective approach for assessing
landslide susceptibility when costly geotechnical and
groundwater data are not available at the adopted scale.

3.2. Basic assumptions

In order to apply the weights-of-evidence method,
historical landslide data are necessary. The landslides
that occurred in the past are used in weighting factors that
mainly contribute to or cause landslides. This approach
carries the fundamental assumption that future landslides
will occur under conditions and factors equal or similar
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to those for comparable past landslides. It is further
assumed that the causative factors for the mapped land-
slides remain almost constant over time. This can only be
assumed for one single landslide type, since causes vary
from type to type. The method therefore must be applied
separately to each landslide type. In addition, it is pre-
sumed that the GIS-data representing the causative
factors are complete and suited to describe the future
landslide hazard, i.e. full knowledge about the factors is
given.

The most important assumption in weights-of-
evidence, however, comes from the application of
Bayes probability theory in the model. It is assumed
that the factors are conditionally independent from each
other with regard to the occurrence of landslides (D). The
assumption can be described for the factors B1 and B2 as
follows:

PfB1 \ B2jDg ¼ PfB1jDgdPfB2jDg ð1Þ

Basically this assumption is a simplification of the
relationships in nature, but it allows the factors to be
assessed separately from each other. The assumption about
the conditional independence of the factors requires a
check of independence of the causative factors. Dependent
factors need to be rejected from subsequent analyses. One
technique to assess the conditional independence between
pairs of factors is to calculate a χ2 statistic to assess the
variation between the expected and observed occurrences
of the patterns in the two factors. The pairwise test between
two factors involves a contingency table calculation,
applicable only to locations at which landslides occur. The
calculation of χ2 statistics involves estimating the
expected number of landslide locations under an assump-
tion that factor i is independent of factor j. The expected
value is calculated as the product of the total number of
marginal landslide locations divided by the grand total
number of landslide locations. The χ2 value is a measure
of the differences between the observed and expected
frequencies, summed over all the cells of the table
(Bonham-Carter, 2002). The assumption of conditional
independence is tested by determining if the measured χ2

value exceeds a theoretical χ2 value, given the number of
degrees of freedom and the level of significance.

3.3. Weights-of-evidence probability analysis

Using Bayesian probability analysis, causative fac-
tors are disposed as input maps. The end product is an
output map showing the probability of occurrence and
the associated uncertainty of the probability estimates of
landslides occurrences.



Fig. 4. Positive weight (W +), negative weight (W −), contrast (C ), and normalised contrast (sC ) calculated for each geology factor. The weights are
measures of correlation and the normalised contrast is a measure of the significance of correlation. Colluvial sediments as well as the Oxford layers
are significant indicators for landslides. Lacunosa marls and Kimmeridge ε limestone are significant indicators for slope stability.
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The major steps of weights-of-evidence are sche-
matically shown in Fig. 3 and can be summarised as
follows:

• Check of the conditional independence for each pair
of factors with regard to the known landslide loca-
tions which leads to either the acceptance or rejection
of some of the factors.

• Calculation of the positive or negative weight for
each factor by using likelihood ratios.

• Re-classification of the causative factors in order to
maximise the spatial relation between the factor maps
and the landslide locations.

• Overlay of the weighted factors and calculation of the
posterior probability and uncertainty.

• Application of the goodness-of-fit test by checking
the overall conditional independence.

The major principle of weights-of-evidence is the
concept of prior and conditional/posterior probability. The
probability P is usually determined empirically with
knowledge about the occurrence of an event D in the
past under equal conditions, and is addressed as prior
probability P{D}. This probability can be modified with
data B that influenced the probability and are gained from
surveys, experiments or analyses (Malczewski, 1999). In
the present study, these additional data are represented by
the causative factors, which are addressed as “evidences”.
When the evidences are integrated into the calculation of
the probability, it is addressed as conditional or posterior
probability P{D|B}. This posterior probability expresses
the probability that an event D will occur under the pre-
sence of an evidence B. Both probabilities (prior and
posterior) are integrated into theBayes theorem as follows:

PfDjBg ¼ PfDgdPfBjDg
PfBg ð2Þ

By overlaying landslide locations with each evidence
(causative factor), the statistical relationship can be
measured between them, and assessed as to whether and
how significant the evidence is responsible for the oc-
currence of past landslides. A pair of weights, W + and
W − is calculated for each evidence. The weights are
dependent on the spatial relation between the landslides
and the evidences. This calculation is done by applying
likelihood ratios, which describe how probably a land-
slide will occur in the case of present evidence and in the
case of absent evidence:

Wþ
j ¼ ln

PfDjBig
PfDj B̄ig

ð3Þ

W−
j ¼ ln

PfD̄jBig
PfD̄j B̄ig ð4Þ



Table 3
Summary of the evidence classes identified as indicators for landslides

Factor/evidence Factors classes W + sC

Geology slope debris, periglacial
solifluction layers, slide masses,
Quaternary colluvial cones

2.15 11.27

Jurassic Oxford layers 1.79 8.43
Soil type Rendzina, clayey, loamy slide

masses superimposed on marl
debris and Rendzina in slope debris

3.19 12.12

Rendzina in solifluction layers,
including rock debris and clay,
superimposed on marl debris

2.27 10.30

Slope angle 25° to 26° 1.47 2.08
24° to 25° 1.90 3.77
23° to 24° 1.62 3.24
22° to 23° 1.93 5.05
21° to 22° 1.68 4.42
20° to 21° 1.70 5.07
19° to 20° 1.69 5.54
18° to 19° 1.87 7.30
17° to 18° 1.81 7.49
16° to 17° 1.70 7.26
15° to 16° 1.74 8.06
14° to 15° 1.79 8.98
13° to 14° 1.75 9.15
12° to 13° 1.75 9.57
11° to 12° 1.75 9.80

Curvature 0.2 to 0.3 (convex) 0.94 2.52
0.3 to 0.5 (convex) 1.47 3.29

Density of
lineaments and
fault zones

26 to 27 1.56 4.13
25 to 26 1.83 5.98
24 to 25 1.85 6.55
23 to 24 2.09 8.72
22 to 23 2.02 8.65

Distance to
escarpment

200 m to 300 m 2.04 8.71
300 m to 400 m 2.05 9.91

The positive weight (W +) indicates positive correlations between
landslides and the classes of the causative factors. The normalised
contrast (sC ) integrates variances in the weights and is a measure of
the significance of the correlation. Both parameters are based on a log-
scale. The slope angles have been classified into many classes in order
to get results comparable with former research work.

19B. Neuhäuser, B. Terhorst / Geomorphology 86 (2007) 12–24
whereW + is the likelihood ratio expressing the ratio that
in case of present evidence B (from a number i of evi-
dences) a landslide D occurs or does not occur. W −

expresses the same relationship in the case of absent
evidence (Bonham-Carter, 2002). Consequently, the
weights give information about whether there is a posi-
tive or negative correlation between the evidence and the
landslide locations. Also the standard deviations of the
weights are calculated.

Apart from the weights, the contrast C=W +−W −

represents a measure of correlation. For a positive spatial
association,C is positive, butC is negative for a negative
association. The normalised C (sC ), C divided by its
standard deviation, provides a measure of confidence.

The weight for each evidence class can be subse-
quently used for the prediction of landslides under in-
tegration of all evidences to calculate the probability of
occurrence for future landslides. In this calculation, the
probabilities are expressed in odds ratios (O), which is
related to the probability P as O=P / (1−P). In addition,
in the weights-of-evidence method, the natural loga-
rithm of the odds is used. The logarithmic scale has the
major advantage that it can be centred at O=1, i.e. a
probability of 0.5.

lnOfDjB1 \ B2 \ B3 \ :::Bng
¼ lnOfDg þ

Xn

i¼1

Wþ ð5Þ

lnOfDj B̄1 \ B̄2 \ B̄3 \ ::: B̄ng
¼ lnOfDg þ

Xn

i¼1

W − ð6Þ

Uncertainties in the posterior probabilities due to
missing data and to variances in the weights are
estimated in the model. This permits estimating and
mapping the relative uncertainty in posterior probability.

As conditional independence is never completely
satisfied, the posterior probabilities are usually over-
estimated in absolute terms. After the integration of all
evidences and the calculation of the posterior probabil-
ity, the result can be checked by a simple goodness-of-fit
test. The method of weights-of-evidence offers a simple
test of the overall conditional independence among the
evidences. The product of the investigated area N{A}
and the posterior probability P, both summarised over
all terrain units, correspond to the number of landslides
predicted by the model.

NfDgcalculated ¼
Xm

k¼l

Pk :NfAgk ð7Þ
where k is the cell number of the map (1, 2,…m). This
equation is based on the assumption that the prior
probability equals the average known landslide density.
If the calculated number of landslides is distinctly higher
than the number of known landslides, the χ2 statistics
are considered to be violated.

3.4. Data sources and restrictions

For the present study, some general geographical
data, which are mainly from the regional atlas “Geo-
wissenschaftlicher Atlas Baden-Württemberg” (LGRB,
1998), were available. Potential faults and fracture zone



Table 4
Total weighting of the causative factors (evidences) in the classes 0
(no correlation with landslides), 1 (negative correlation with landslides)
and 2 (positive correlation with landslides)

Causative factor
(evidence)

Weighting (W ) Contrast
(C )

Normalised
contrast
(sC )

0 1 2

SOIL (Soil type) −8.47 – 1.81 10.28 1.03
GEOLO (Geology) −7.97 −2.89 1.71 9.68 0.97
LDENS (Lineament-
density)

−4.31 −1.05 1.65 5.96 0.59

ESCAR (Distance-
escarpment)

−3.69 0.74 1.83 5.52 5.44

SLOPE (Slope angle) −3.20 −0.88 1.79 4.99 0.49
CURVE (Curvature) – −0.15 0.68 0.83 2.68

Class 2 indicates the relative importance of the causative factor as a
landslide indicator. The normalised contrast is a measure of the con-
fidence of the weighting.
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locations were also available as a result from a com-
parative satellite image analysis of the geological struc-
ture including lineaments (Theilen-Willige, 2002, 2005).
Slope and curvature were derived from the freely avail-
able SRTM terrain model with a resolution of 90 m
(SRTM, 2004). The available data are described in
Table 1.
Fig. 5. Landslide susceptibility map for recent (Holocene)
Holocene landslides, used for the analysis, are those
occurred in the last 200 years. The landslides have an
average size of 0.04 km2, but many of them are smaller,
approximately 0.01 km2 in size. The size of the landslides
as well as the level of detail and resolution of the other
available data was considered in determining the basic
terrain unit for the analysis with a size of 0.008 km2.

The matrices of Table 2 give the χ2 values and the
corresponding probability values which result from the
overlay of two factors. The probability values are cal-
culated on the basis of the classes of the factors. The
table records the relative number of landslides occurring
for a specific overlap of two factors. Probability values
b0.05 indicate some conditional probability, or the fail-
ure of the conditional independence test at the 95%
level. Low values of probability indicate conditional
independence.

The low probability values and high χ2 values be-
tween the factors “slope angle” and “geomorphology”,
“lineament-distance” and “lineament-density”, and “ge-
ology” and “hydrogeology” indicate conditional depen-
dence (Table 2). The following factors are independent
of one another with regard to the landslides, and were
used for the analysis: “geology”, “lineament-density”,
landslides, expressed as probability of occurrence.
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“curvature”, “slope angle”, “distance-escarpment” and
“soil type”.

4. Results

By means of the overlay of the landslide locations
with each of the factors (evidences) in pairs and calcu-
lating the statistical parameters for the spatial relation-
ship, the factors were re-classified into those positively
correlated with the landslide locations (W +N0 and
W −b0), negatively correlated (W +b0 andW −N0), and
uncorrelated (W + =W −=0). For the geology factor, for
example, colluvial sediments as well as the Oxford
layers are positively correlated with the landslide
locations (W +N0 and W −b0). The Lacunosa marls
and Kimmeridge ε limestone are negatively correlated,
indicating slope stability (Fig. 4). The relation of
positive and negative weight is also expressed in the
contrast C, which is a measure of correlation.

Table 3 summarises the factors that are positively
correlated with the landslide locations. These factors are
therefore the crucial causative factors for the past
landslides and are likewise possible indicators for future
landslides. The larger W + is, the higher the positive
correlation is. Table 3 shows that steep slopes consisting
of colluvial layers, periglacial solifluction layers, and
colluvial cones are particularly susceptible. These are
formed on argillaceous and silty layers — conditions
predestined for slope instability. The stratified slope
material forms numerous natural slip surfaces. The
Oxford layers of the Upper Jurassic, which mainly form
the escarpment, were identified as a major landslide
Fig. 6. Prediction
indicator. This agrees with the results of Kallinich
(1999) and Thein (2000).

Rendzinas are the main soil type of the study area
developed in periglacial solifluction layers, rock debris,
clayey material and superimposed on marl debris that
are also susceptible. Additionally, slope angles from 11°
to 26° foster landslides. This result is in line with those
of Thein (2000), who noted increased mass movements
at slope angles from 10° to 30°.

Before the probability of occurrence (posterior prob-
ability) is calculated by using the weighted factors, they
were re-classified into three on the basis of the statistical
parameters: (0) zero training points (landslides) avail-
able, (1) null or negative correlation, and (2) positive
correlation. The class 2 therefore comprises the original
classes that were identified as landslide indicators.
Following this re-classification, total values of W, C,
and sC were calculated (Table 4). These values show the
relative importance of the factors for the occurrence of
landslides.

Soil type and geology in total have very strong
predictive powers (CN9). Kallinich (1999) and Thein
(2000) also stated that geological conditions are the
primary cause of the mass movements in the study area.
The density of lineaments and fault zones, the distance
from the escarpment, as well as the slope angle have
good predictive power (CN5). Slope angle and linea-
ment density have relatively high variances in C, in-
dicating that the confidence is relatively weak. The
curvature of the slope has the weakest predictive power.
Previous studies (e.g., Thein, 2000) have demonstrated
the curvature to be an indicator for landslides. The low
rate curve.
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weighting of the curvature may be explained by the
quality of the SRTM terrain model.

In the last phase the overlay of all weighted factors
and the calculation of the total posterior probability were
carried out on the basis of the previously calculated
weights. The calculated probabilities are between 0 and
91%. Fig. 5 shows the calculated posterior probability
for recent (Holocene) landslides. These values, howev-
er, include uncertainties resulting from the variances of
the weights. The uncertainties in the model range be-
tween 0 and 0.60.

The resulting posterior probability values can be
normalised so that the overall measure of conditional
independence of the model is satisfied. For that reason a
measure for the conditional independence was calculat-
ed, i.e. a ratio of the actually known landslide locations
to the calculated number of landslide locations was
obtained (Eq. (7)). A value of the ratio below 0.5 (50%)
shows conditional dependence in the model. The test
resulted in a value of 0.025 indicating an overestimation
of the posterior probability. The normalised posterior
probability values range between 0 and 2.3%. Due to the
uncertainties and the conditional dependence in the
model, the resulting values as given in Fig. 5 must be
considered as relative weighting and not as absolute
values.

5. Assessment of the model

In principle, a real validation of a landslide suscepti-
bility map is only possible when new landslides occur
after the creation of the map. However, this “wait-and-
see” strategy is unacceptable, because a measure of the
predictive power and validity should be offered together
with the susceptibility map, in particular when the maps
are applied to land use planning decisions. A possible
means of validation is to use a split sample of landslides
that were not used in the modelling process. These
landslides are independent of the model and can there-
fore be treated as “future” landslides (Chung and Fabbri,
2003). The so-called prediction rate calculates how
much percentage of the independent landslides could be
estimated and consequently “predicted” with the highest
level of susceptibility.

Our model was assessed in terms of its predictive
power and validity by calculating the prediction rate.
This requires the separation of the landslides into
modelling and validation sets. A time-based separation
would be most appropriate— while older landslides are
used for modelling, younger landslides are used for
validation (Van Westen et al., 2003). For this study,
however, no dating record of the landslides was avail-
able, therefore the separation of the landslides into two
sets was done on a random basis. The modelling set
contained 43 landslides, the validation set consisted of
23 landslides. After the re-calculation of the probability
of occurrence by using the modelling set, the suscep-
tibility map was compared with the validation set after-
wards. The landslides in the validation set were overlaid
with the hazard maps and the number of landslides per
susceptibility class was calculated using zonal statistics.
Afterwards the landslides, as well as the area per
susceptibility class, were cumulated beginning with the
classes with the highest probabilities for landslides. The
resulting prediction rate curve shows that the predictive
power of the model is very high (Fig. 6). If 10% of the
classes have high probabilities for future landslides,
95% of the independent landslides can be correctly
“predicted”.

6. Discussion

The resultant landslide probability values cannot be
considered as absolute values because the test of the
overall conditional independence indicated that the
probabilities have been overestimated in absolute terms.
Indeed, every model like ours contains conditional
dependence to some extent. A conditional dependence
value of 0.03, however, indicates a strong overestimation.

Besides, the final probability values are dependent on
the number of landslides used for modelling. The number
is decisive for the prior probability which influences the
absolute range and stability of the weights of the factors.
Additionally, the size of the terrain determines the choice of
the size of the unit area. According to Bonham-Carter
(2002), the recommended (empirical) unit area is the
quotient of the total study area and total training points
(landslides) divided by forty. The present study further
indicates that there should be only one single landslide
training point per unit area in order to avoid overestimation.

Nevertheless, the circumstances described above do
not influence the relative weighting of the factors.
Therefore the analysis here is still applicable, but with
the realization of the limitation that the absolute prob-
ability values are dependent on the number of known
landslides and on the degree of conditional indepen-
dence in the model.

The basic assumption about the independence of the
causative factors principally goes against the natural
relationships between the causative factors, and is therefore
not always applicable to the available data. The violation of
this assumption results in unrealistic probability values.
This problem can be treated by testing the conditional
independence and by integrating only independent factors
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into the modelling process. Most available data can be
dependent, however, restricting the amount of usable data.
This is the reason why this basic assumption of
independence is the biggest limitation of the method. In
this context, the re-classification of data before the overlay
is also a disadvantage. On the one hand this means
subjective intervention by an operatorwho defines the class
borders, and on the other hand new dependence between
the factors was created by this generalisation.

The most frequently used statistical methods for
landslide susceptibility assessments are multiple logistic
regression analysis, discriminant analysis, factor analy-
sis, and cluster analysis. In comparison with these ana-
lyses, the weights-of-evidence method provides results
easy to interpret, and spatial patterns with complex
geometries can be modelled with the same computa-
tional effort as simple patterns with simple geometry.
Although the weights-of-evidence method is restricted
by the assumption on conditional independence, it is not
constrained by the classical assumptions of the other
parametric methods such as logistic regression, includ-
ing distributional assumptions which spatial data often
violate. The effect of each spatial variable can be cal-
culated independently of a combined solution.

7. Conclusions

Although our assessment on a regional level gives
rather general information, the comparison with existing
hazard maps that were produced at the same scale
(“Landschaftsökologischer Atlas“ or “landscape ecology
atlas”; Durwen et al., 1996) showed that a higher degree of
differentiation between stable and unstable slopes could
be reached with the present model (Fig. 5). A regional
assessment of the susceptibility can therefore be consid-
ered as successful. An advantage of the present susceptibi-
lity map is that information on the tectonic condition has
been included based on the satellite image interpretation
of lineament. It can also give valuable support for the
delineation of potential risk zones, which should be
investigated inmore detail by geotechnical investigations.

The statistical method employed in this study deter-
mined several crucial factors for landslide susceptibility
in the study area. In particular, slopes with angles from
11° to 26°, consisting of colluvial layers, particular soils,
or a set of diverse geological layers were identified as
indicators for slope instability. Mainly the soil type
“Rendzina” (Rendzic Leptosol) developed in solifluc-
tion layers on top of marl debris can be responsible for
increased risks.

The major improvement over some existing maps lies
in the fact that the landslide susceptibility can be quan-
tified by the derived probabilities, although the values
were systematically overestimated. If we accept the fact
that the probability values are not absolute but represent
relative degrees of susceptibility, they provide appropri-
ate and valid measures of landslides. Indeed, a very good
predictive quality can be reached by the model (Fig. 6).

The resolution of the SRTM terrain model seems to
be insufficient for the statistical analysis of topographic
influence on the occurrence of landslides. Although the
resolution of 90 m accommodated the size of the land-
slides in the study area and the resolution of the other
data, no statistical significance in the calculation of the
weights could be reached for the classes of curvature
and slope angle derived from the terrain model. Further
studies using a more detailed terrain model are required.
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